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In areas of oil and gas exploration, seismic lines have been reported to alter the movement pat-
terns of wolves (Canis lupus). We developed a mechanistic first passage time model, based on
an anisotropic elliptic partial differential equation, and used this to explore how wolf movement
responses to seismic lines influence the encounter rate of the wolves with their prey. The model
was parametrized using 5 min GPS location data. These data showed that wolves travelled
faster on seismic lines and had a higher probability of staying on a seismic line once they
were on it. We simulated wolf movement on a range of seismic line densities and drew impli-
cations for the rate of predator–prey interactions as described by the functional response.
The functional response exhibited a more than linear increase with respect to prey density
(type III) as well as interactions with seismic line density. Encounter rates were significantly
higher in landscapes with high seismic line density and were most pronounced at low prey den-
sities. This suggests that prey at low population densities are at higher risk in environments
with a high seismic line density unless they learn to avoid them.

Keywords: encounter rate; mean first passage time; seismic lines;
spatial heterogeneity; wolf movement
1. INTRODUCTION

One of the most common functional response models is
the Holling disc equation [1]. In the disc equation, the
encounter rate is assumed to be linearly related to
prey density by the ‘instantaneous search rate’ [2] or
‘area of discovery’ [1]. This leads to the type I functional
response, or the type II functional response once hand-
ling time is included. Previous theoretical work suggests
that this assumption of linearity may not hold if pred-
ator movement is partially random, i.e. the new area
searched by the predator per unit time is not constant
[3]. The results suggest that, in one dimension and
under certain assumptions regarding prey availability,
the encounter rate of predators undergoing a random
walk has a quadratic relationship with prey density.
This quadratic relationship arises because during a
random walk, predators may repeatedly return to
regions previously searched. When substituted into
the disc equation, McKenzie et al. [3] showed that a
quadratic encounter rate leads to a type III functional
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response, thereby demonstrating a link between preda-
tor movement modes and the shape of the functional
response. McKenzie et al. [3] worked in a simplified
theoretical framework, but it is known that predators
searching for prey in spatially heterogeneous habitats
have both directed and random components to their
movement. In this case, the encounter rate is expected
to be a more complex function of prey density, perhaps
involving both linear and quadratic terms, and there-
fore possibly leading to some combination of the
familiar type II and type III functional responses.

Owing to the challenges of reproducing the theoreti-
cal arguments used by McKenzie et al. [3] under
assumptions of more realistic predator movement in
heterogeneous landscapes, here we take a different
approach to investigate the link between predator
movement and the functional response. We first derive
more realistic predator movement models based on
predator movement data. Then, using these movement
models, we simulate prey encounter rates over a range of
prey densities and fit the simulated encounter rate data
to the encounter rate models. Finally, we substitute the
encounter rate function into the disc equation to deter-
mine the shape of the resulting functional response.

For the source of spatial heterogeneity, we focus on
seismic lines, which are narrow, linear stretches of
This journal is q 2012 The Royal Society
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forest, cleared for energy exploration ([4] and electronic
supplementary material, appendix figure S1a). Wolves
(Canis lupus) have been found to both avoid and use
linear features, depending on the linear feature density
and level of human use [5–8]. Because studies have
shown that wolves moved up to 2.8 times faster on
linear features than in the forest [6], it has been hypoth-
esized that seismic lines may benefit wolves if increased
travel rates result in higher encounter rates with prey
[9–11]. Consequently, in landscapes with high densi-
ties of seismic lines, species such as caribou (Rangifer
tarandus) and elk (Cervus elaphus) may be at higher
predation risk owing to higher encounter rates [12–14].

In this paper, we use this example of wolf movement
in response to seismic lines to demonstrate the link
between animal response to spatial heterogeneity and
functional response models. We follow the mean first
passage time approach described McKenzie et al. [3]
extended to two dimensions. In the context of preda-
tion, we define the mean first passage time as the
average time required for a moving predator to locate
a first stationary prey, given a specific prey density
[3]. Therefore, the inverse of mean first passage time
is the encounter rate at that prey density. Using this fra-
mework, it is possible to formulate first passage time
models that reflect the effect of landscape features on
predator movement. After evaluating the influence of
different movement responses of wolves on seismic
lines, we use model outputs to assess a set of a priori
models relating encounter rate to seismic line and
prey density, both independently and together. The
functional forms of the candidate models are chosen
to reflect different underlying predator movement
mechanisms. Using the best-fit model, we investigate
the implications for wolf functional responses owing to
increased predator mobility in the presence of seismic
lines, and discuss how these ideas could be extended
to include other sources of landscape heterogeneity.
2. METHODS

2.1. Modelling

Encounter rate is the rate at which predators encounter
prey in the landscape (unit: time21). Here, we consider
a mechanistic model for encounter rate that includes the
effect of predator movement. We modelled encounter
rate using mean first passage time. Mean first passage
time, T(x) (unit: time), is the average time required
for a predator starting at location x to encounter any
number of stationary prey, given a specified prey distri-
bution and landscape. Although it would be possible to
approximate T(x) from averaging repeated random
walk simulations from each point x of interest, an
alternative, computationally efficient approach uses a
partial differential equation to describe the surface
T(x). This approach is based on the Fokker–Planck
approximation for animal movement patterns that is
described in depth by Turchin [15] and in particular
for this model by McKenzie et al. [3]. To derive a partial
differential equation for T, McKenzie et al. [3] begin by
encoding aspects of wolf movement believed to be
important in determining space use, in this case
Interface Focus (2012)
focusing on wolf response to seismic lines, into a set of
probabilistic movement rules for individual wolves.
These are then translated, using mathematical approxi-
mations, into the following partial differential equation
for T.

dxxðxÞ
@2T
@x2 þ 2dxyðxÞ

@2T
@x@y

þ dyyðxÞ
@2T
@y2

þ cðxÞ � rT þ 1 ¼ 0; x [ V; ð2:1Þ

where the domain V is the landscape of interest. In this
mathematical formulation, as is the case in the Holling
disc equation, the prey are assumed to be stationary and
are represented by interior Dirichlet (absorbing disc)
boundary conditions. This means that if the predator
starts within perception radius r of a prey item, the
time required to locate a prey item, T, equals zero.
Defining prey in this way allows us to study the behav-
iour of the first passage time model for any finite
number of prey, with spatial locations of our choosing.
The particular prey scenarios we considered are further
described in the §2.3. The coefficients of the partial
derivatives are derived mechanistically based on the
underlying predator movement behaviour (electronic
supplementary material, appendix). Equation (2.1)
includes diffusive movement in the first three terms
(dxx , dxy and dyy), and advective movement in the
fourth term (c), which together approximate animal
movement. The dependence of the diffusion and
advection terms on the location x indicates that move-
ment terms can vary from one location to other.
Directionality in the movement terms can arise either
from the advection term (c), which indicates a direc-
tional bias in the movement, or from anisotropic
diffusion (unequal values for dxx , dxy and dyy), which
indicates different levels of random movement in differ-
ent directions. For example, in the absence of other
influences, far from the landscape features predators
may move in a random fashion. However, their move-
ment may become more directed as they interact with
landscape features.

The solution to equation (2.1) is a two-dimensional
surface T(x), where the value of the surface at each
point in space is the mean first passage time of a predator
located at x. Therefore, the value of the surface at each
point in space indicates how long, on average, a predator
starting x would need to search before locating a prey
item. This surface provides a picture of how the mean
first passage time varies in space, and can be summarized
by the spatially averaged mean first passage time,

�T ¼
ð
V

1
A

TðxÞ dx; ð2:2Þ

where A is the area of V. The average mean first passage
time is the mean first passage time assuming that the
predator initially is randomly distributed in the land-
scape. For a given landscape and prey density, the
average mean first passage time can then be related to
the encounter rate by

E ¼ 1
�T :

ð2:3Þ
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Table 1. Summary of the proposed wolf movement models and the corresponding form of the mean first passage time equation
for each. Exact formulae for the coefficients are given in the electronic supplementary material, appendix.

model explanation and form of equation (2.1)

no response wolves do not alter their movement in response to seismic lines
wolves move according to a random walk everywhere in the landscape

d @2T
@x2 þ d @2T

@y2 þ 1 ¼ 0; x [ V

anisotropic diffusion far from seismic lines wolves move randomly
wolves move faster on seismic lines and are more likely to continue
along them in either direction once on them

d
@2T
@x2 þ d

@2T
@y2 þ 1 ¼ 0; x off seismic lines

dxxðxÞ
@2T
@x2 þ 2dxyðxÞ

@2T
@x@y

þ dyyðxÞ
@2T
@y2 þ 1 ¼ 0; x on seismic lines

anisotropic diffusion þ bias far from seismic lines wolves move randomly
wolves bias their movement towards seismic lines when near them
wolves move faster on seismic lines and are more likely to continue
along them in either direction once on them

d
@2T
@x2 þ d

@2T
@y2 þ 1 ¼ 0; x off seismic lines

dxxðxÞ
@2T
@x2
þ 2dxyðxÞ

@2T
@x@y

þ dyyðxÞ
@2T
@y2

þcðxÞ � rT þ 1 ¼ 0; x near seismic lines

dxxðxÞ
@2T
@x2 þ 2dxyðxÞ

@2T
@x@y

þ dyyðxÞ
@2T
@y2 þ 1 ¼ 0; x on seismic lines
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It would be possible to account for a non-random initial
distribution of the predator by replacing the uniform
weight 1/A in equation (2.2) with a more general prob-
ability density function for the initial location of the
predator u(x). For example, the distribution u(x) could
be a statistical home range model, such as that of
Kernohan et al. [16], or a mechanistic home range
model, such as that of Moorcroft & Lewis [17].

Based on previous studies of wolf movement in land-
scapes with linear features [6,7], wolves are likely to
show varied responses to these features. In the simplest
model (no response), wolves do not alter their move-
ment in response to seismic lines. This model is
analogous to wolf movement in a landscape without
seismic lines and corresponds to a random walk every-
where in the landscape. Although this model may be
biologically unreasonable [5,8], it provides a baseline
for comparison in understanding the effect of increasing
prey density on encounter rate in the absence of seismic
lines. In the second model (anisotropic diffusion),
wolves move faster on seismic lines and are more
likely to continue along them in either direction once
on them. Mechanistically, we considered the anisotropy
as arising from higher movement speed in either direc-
tion along the seismic lines as well as possible
correlations in the random walk when moving along
the seismic lines. Both these mechanisms individually
would lead to an enhanced diffusion coefficient [18]
but only in the direction of the seismic line. This was
incorporated mathematically by allowing anisotropic
diffusion on seismic lines, where diffusion was increased
along the seismic line and decreased across it. This
Interface Focus (2012)
model corresponds to a random walk away from seismic
lines and a random walk with anisotropic diffusion on
seismic lines. The final model (anisotropic diffusion þ
bias) was an extension of the previous model where,
in addition to being more likely to continue along seis-
mic lines when on them, wolves also biased their
movement towards the seismic line when near them.
This model corresponds to a random walk far from seis-
mic lines, a biased random walk near seismic lines, and
a random walk with anisotropic diffusion on seismic
lines. In addition to the terms previously discussed,
the equation for this model also includes an advection
term in regions near seismic lines, pointing in the direc-
tion towards the nearest seismic line. Each of the three
wolf movement models leads to different forms of
equation (2.1) as summarized in table 1. The details
underlying the calculation of the coefficients are given
in the electronic supplementary material, appendix.
2.2. Wolf movements

We studied the movements of four GPS-collared wolves
in the central east slopes of the Rocky Mountains,
Alberta, Canada where average daily mean temperatures
were 27.58C in winter (January/February) and 18C in
spring (March/April) and total snowfall was 54 cm
in winter and 24 cm in spring. This area supports
prey populations of moose (Alces alces), mule and
white-tailed deer (Odocoilues hemionus and Odocoiles
virginianus), and elk (Cervus canadensis), as well as
their main predator, wolves. Wolf densities ranged from
9.7 to 22.3 wolves per 1000 km2 [19]. Seismic line density
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varied from 0.18 km km22 near the Western border to
4.4 km km22 near Rocky Mountain House, with a
mean of 1.8 km km22. It is likely that seismic lines
experienced a range of human use year-round for hunt-
ing, trapping, snowmobiling, off-roading and hiking.

Movement data were obtained from GPS locations of
collared wolves from four individuals in three packs
during January–April 2005, occupying territories
across a gradient of seismic line densities from 1.73 to
3.60 km km22 [20]. Collars were programmed to collect
locations at 5 min intervals and successfully recorded
locations on 90 per cent of fixed attempts. Data were
downloaded upon retrieval via a remote release mechan-
ism (three wolves) or recapture (one wolf). Wolves were
considered to be independent units because they were
either from different packs or the data were collected
during different time periods.

We described movements via vectors joining the cur-
rent and next consecutive wolf location. Each vector
was characterized by step length and movement direc-
tion (with direction North having 08). To investigate
the appropriateness of a diffusion-type model for move-
ment, we calculated the mean-squared displacement for
each wolf for time intervals of length 5, 15, 30, 60 and
120 min. A simple diffusion model with no correlations
predicts a linear increase in the mean square displace-
ment (m.s.d.) as a function of time interval. We also
calculated correlations in successive movement direc-
tions using the circular correlation coefficient (raa)s [21].

Our movement model characterized wolf movement
via step length (r . 0) and relative move direction.
Relative move direction (21808 � j � 1808 ) is the
angle between the ‘beeline’ move direction of the
animal and the direction of a straight line pointing
from the current location towards the nearest seismic
line (electronic supplementary material, appendix
figure S1). A relative move direction of j+ 908 rep-
resents moves along the seismic line j ¼ 08 represents
moves towards the seismic line, and j+ 1808 represents
moves away from the seismic line. Because GPS
measurement error may result in incorrect inference of
move direction between locations that are less than 5
s.d. of the GPS error kernel apart [22], we considered
only those relative move directions with corresponding
move distances greater than 55 m [23]. However, we
used all of the distances when calculating step lengths
so as to avoid introducing a bias towards longer moves.

To understand how the distance of a wolf to a seismic
line affected the step lengths and relative move direc-
tions of the wolves, we classified wolf locations into
three groups: on, near and off seismic lines. Seismic
lines were assumed to have an average width of 5 m
and were buffered by an additional 24.5 m on each
side to account for GPS measurement error in wolf
locations [23]. Locations within the GPS error buffer
were classified as ‘on’. Locations between the GPS
error buffer and the distance at which we assumed
wolves perceived seismic lines were classified as ‘near’.
We arbitrarily chose a distance of 50 m to represent
the distance at which seismic lines might be visible to
wolves. Locations beyond the perceptual range were
classified as ‘off’. We quantified and compared the
distributions of each near, far and off seismic lines.
Interface Focus (2012)
Step lengths of canids often follow the exponential
distribution

f ðrÞ ¼ a exp½�ar�; ð2:4Þ

where a is the mean step length [17]. The maximum-
likelihood estimate â is the sample mean, �r. We
compared the mean step lengths on, near and off seis-
mic lines using 90% confidence intervals obtained by
non-parametric bootstrapping [24].

The von Mises distribution is commonly used
to describe animal movement directions ([17] and
electronic supplementary material, appendix). We
assumed that the distribution of relative move direc-
tions of wolves on seismic lines followed the bivariate
von Mises distribution

KðjÞ ¼ 1
4pI0ðkÞ

exp½k cosðjþ 90WÞ�

þ 1
4pI0ðkÞ

exp½k cosðj� 90WÞ�; ð2:5Þ

where the movement directions are oriented in the
direction of the seismic line. To determine whether ani-
sotropic movement was present, we tested the null
hypothesis H0 : k ¼ 0 (no tendency to continue along
the seismic line in the next move) against the alterna-
tive hypothesis Ha : k . 0 (tendency to continue along
the seismic line in the next move) using the parametric
bootstrap likelihood-ratio (PBLR) test [25,26]. For
moves near seismic lines, we assumed that the dis-
tribution of relative move directions was univariate
von Mises,

KðjÞ ¼ 1
2pI0ðkÞ

exp½k cosðjÞ�, ð2:6Þ

where the movement directions are oriented towards the
seismic line. To determine whether bias towards
the lines was present, we tested the null hypothesis
H0 : k ¼ 0 (no tendency to move towards the seismic
line in the next move) against the alternative hypoth-
esis H0 : k . 0 (tendency to move towards the seismic
line in the next move) using the PBLR test [25,26]. In
each case, the maximum-likelihood estimate k̂ was
found by numerical maximization of the likelihood
function and non-parametric bootstrapped 90%
confidence intervals constructed [24].

To investigate the effect that possible correlations in
successive movement directions would have on the
movement patterns, we simulated 1000 wolf movement
paths based on choosing the turning angle and step
length randomly from the measured data values.
These simulations were repeated for each individual
wolf for situations on and off linear features and the
mean-squared displacement per day was calculated as
a summary statistic.

2.3. Model scenarios

To study the effect of seismic line density and prey density
on encounter rate for wolves, we solved equation (2.1)
numerically for various scenarios using COMSOL
Multiphysics (COMSOL, Inc. Stockholm, Sweden). We
chose the domain V to be a 25 km � 25 km landscape,

http://rsfs.royalsocietypublishing.org/


Table 2. Candidate models for encounter rate (E) of wolves as a function of prey density (N) and seismic line density (S).

model explanation form

single variate models: seismic line density
A1 linear E ¼ b0 þ b1S
A2 quadratic E ¼ b0 þ b1S þ b2S

2

A3 exponential E ¼ AebS

single variate models: prey density
B1 directed search E ¼ b1N
B2 random search E ¼ b1N

2

B3 combination of directed and random search, using a sum E ¼ b1N þ b2N
2

B4 combination of directed and random search using an intermediate power E ¼ ANb

multivariate models
C1 no effect of seismic lines E ¼ ANb

C2 linear interaction between seismic lines and prey density E ¼ ANb þ b1NS
C3 nonlinear interaction between seismic lines and prey density (same power) E ¼ ANb þ b1N

bS
C4 nonlinear interaction between seismic lines and prey density (different power) E ¼ ANb1 þ b1N

b2S
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similar in area to the average home range size of thewolves
in the study area [19]. The edges of the domain were sub-
ject to Neumann (reflecting) boundary conditions. This
corresponds to the wolf remaining within its home
range. We then computed the encounter rate for each
scenario using equation (2.3). Because wolves remain at
a kill site for several hours or longer and typically do
not hunt immediately after consuming prey, it is reason-
able to assume that between hunting bouts, the prey
species have time to move. Therefore, the assumption in
computing E from �T that the predator initially is ran-
domly distributed with respect to the prey is not
unreasonable. Although the movement data of three
out of the four wolves showed evidence of anisotropic
diffusion, only wolf 233 showed evidence of both aniso-
tropic diffusion and bias towards seismic lines (see §3).
Therefore, in order to compare the effects of the three
different movement models on encounter rate, we
estimated the coefficients for all the three models (no
response, anisotropic diffusion and anisotropic
diffusionþ bias) from the wolf movement data for wolf
233 using the methods described in the electronic
supplementary material, appendix.

We generated simulated landscapes with varying
seismic line densities based on seismic line layers of
west central Alberta mapped at a resolution of 5 m
using Indian remote sensing satellite imagery [27].
A baseline seismic line density of 4.46 km km22 was
used to create landscapes with seismic line densi-
ties ranging from approximately 2 km km22 to 9 km
km22 (electronic supplementary material, appendix
figure S2). Prey were randomly placed in these landscapes
at densities of 0.16, 0.5, 1, 1.5, 2, 2.5 and 3 prey km22.
We chose to include the density of 0.16 as it is similar
to the lower range of density of common prey species in
our study area [19]. We assumed wolves encountered a
prey when they came within radius r ¼ 100 m of the
prey. In the model, this corresponds to a disc in
the domain with radius r ¼ 100 m, centred on the prey,
with Dirichlet (T ¼ 0) boundary conditions.

We evaluated the effect of wolf movement responses
to seismic lines based on the first passage time solutions
from two sets of simulations. First, for a fixed prey
Interface Focus (2012)
density of 0.16 prey km22, we simulated the effects of
the three different movement models outlined in
table 1. Simulations were iterated 10 times at each seis-
mic line density using a different distribution of
randomly located prey. Encounter rates were plotted
against seismic lines densities and visually inspected
to assess the effects of movement responses to seismic
line on encounter rates across a range of seismic line
densities. Second, we assumed wolves moved according
to the anisotropic diffusion model (table 1) and solved
equation (2.1) for 10 replications of each prey density
and seismic line density (i.e. six prey densities � 10
replications � 4 seismic line densities ¼ 240 model sol-
utions). We chose the anisotropic diffusion movement
model because we found that it reflected the greatest
effect of seismic lines on encounters with prey for our
investigation. In each case, we used T(x) to compute
the encounter rate using equations (2.2) and (2.3). We
used the outputs of these simulations to evaluate a set
of a priori candidate models (table 2) relating encoun-
ter rates to seismic line or prey densities or both using
the nonlinear regression analysis package nls in R and
comparing the fit of the models based on Akaike infor-
mation criterion [28].

The functional forms of the candidate models
(table 2) were proposed based on the results obtained
earlier [3], which suggested that different underlying
predator movement mechanisms lead to different
relationships between encounter rate and prey density.
McKenzie et al. [3] found that in one dimension, the
encounter rate for predators undergoing only advective
movement was a linear function of prey density. This is
consistent with the assumption of a constant area
searched per time made by Holling [1]. In contrast,
McKenzie et al. [3] found that the encounter rate for
predators undergoing only random movement was a
quadratic function of prey density. Depending on the
density of seismic lines, predators in our model undergo
some combination of anisotropic diffusion along seismic
lines and random searching off seismic lines via isotropic
diffusion. Although the anisotropic diffusion model dif-
fers mathematically from the advective movement
model, there is a similarity. Anisotropic diffusion

http://rsfs.royalsocietypublishing.org/
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biases movement in relation to both directions along the
seismic line, whereas advection biases movement behav-
iour in relation to a single direction. Based on this
similarity, we consider the anisotropic diffusion to
describe a particular form of directed motion. There-
fore, we proposed several model forms for the
independent and combined effects of prey density and
seismic lines that have a mechanistic basis for describ-
ing encounter rates when the search is a combination
of directed and random motion by analogy with the
earlier results [3].

2.4. The functional response

The functional response f(N) describes the per capita
kill rate as a function of prey density N. Here, we
investigate the potential variation in the functional
response owing to increased predator mobility in the
presence of seismic lines. To model the functional
response, we use the Holling disc equation,

f ðN Þ ¼ EðNÞ
1þ EðNÞTh

; ð2:7Þ

where the encounter rate E depends on prey density and
Th is the constant handling time. The handling time is
defined by Holling to be the sum of the attack time
(including evaluating, pursuing and catching the prey)
and the handling time (including processing and con-
suming the prey). Traditionally, the encounter rate is
assumed to be proportional to the prey density. Instead,
we used the best multivariate model for encounter rate
from table 2. Using the best model for encounter rate,
we asked the question: how does the functional response
change as the proportion of directed and random move-
ment changes owing to increasing seismic line density?
To answer this question, we compared the functional
response in landscapes with seismic line densities of 0,
4.46 and 8.91 km km22 by computing the ratio of the
functional response at each seismic line density to
that when there are no seismic lines present. If the
ratio is 1, then seismic lines do not alter the kill rate.
If the ratio is greater than 1, the presence of seismic
lines leads to an increase in the kill rate. The larger
the ratio, the larger the difference between the encoun-
ter rates in landscapes with and without seismic lines,
and the stronger the effect of seismic lines. To see if
the magnitude of the effect of seismic lines on the func-
tional response depended on the handling time, we
compared results assuming handling times for small-
bodied (Th ¼ 10.6 h) and large-bodied (Th ¼ 20.4 h)
prey [19].
3. RESULTS

3.1. Wolf movements

Visual inspection of the mean-squared displacements as
a function of measurement time interval showed varia-
bility between wolves but exhibited approximately
linear growth in the m.s.d. as a function of time,
except at short time intervals (electronic supplemen-
tary material, appendix figure S3). When the 5 min
move directions were constrained to include only those
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with step lengths of at least 55 m so as to remove
errors (§2), we found statistically significant positive
correlations in wolf movement directions with positive
circular correlation coefficients of 0.20, 0.61, 0.33 and
0.43 for wolves 230, 232, 233 and 234. Movement pat-
terns of wolves in landscapes with seismic lines were
not consistent among individuals. All wolves had a
longer mean step length on seismic lines than off seismic
lines (figure 1a, p , 0.1). Wolves 230, 232 and 234 had
a shorter mean step length off seismic lines than near
seismic lines, while wolf 233 had a shorter mean step
length near seismic lines. On seismic lines wolves 230,
233 and 234 had distributions of relative move direc-
tions that differed from the uniform distribution, with
moves along seismic lines occurring more often than
moves in other directions (figure 1b, p , 0.001). Wolf
232 moved randomly with respect to seismic lines. In
contrast, near seismic lines, only wolf 233 had a non-
uniform distribution of relative move directions
(figure 1c, p , 0.001). When off seismic lines, all
wolves had uniform distributions of relative move
directions (figure 1d). We chose to use the move-
ment parameters from the data for wolf 233 in our
simulations because wolf 233 showed evidence of all
the movement behaviours of interest (electronic
supplementary material, appendix table S1). The maxi-
mum-likelihood fit of wolf 233 step lengths to the
exponential probability density function yielded mean-
squared displacement values of 0.017 km2 5 min21

off-lines and 0.043 km2 5 min21 on-lines (electronic sup-
plementary material, appendix table S1) scaling up to
4.90 km2 d21 off-lines and 12.4 km2 d21 on-lines. The
simulations of movement patterns yielded estimates for
the off-line mean-squared displacement as 4.96 km2 d21

and the on-line mean-squared displacement of
18.83 km2 d21 for wolf 233, indicating that successive
correlations in move direction have the effect of increas-
ing the on-line mean-squared displacement per unit time
by about 50 per cent. Other simulated mean-squared dis-
placements for wolves were 5.86, 9.88 and 7.92 km2 d21

(off-line) and 10.93, 24.08 and 32.26 km2 d21 (on-line)
for wolves 230, 232 and 234, respectively.
3.2. Model scenarios

Examples of the solution to mean first passage time
equation (equation (2.1)) are shown in figure 2. For
any point x ¼ (x,y) in the domain, the value of the
mean first passage time surface is the average time for
a wolf starting at that location to encounter a prey
item. Changes in prey density or seismic line density
cause local differences in the mean first passage time
surfaces. For example, surface height, the presence of
peaks and the steepness of gradients differ between
the example surfaces. These local differences translate
into different average mean first passage time values,
�T (see equation (2.2)), which we investigated further
with statistical models.

For a fixed prey density, encounter rate was constant
when wolves did not alter their movement (no response
model) with response to seismic lines (figure 3a).
Encounter rates increased linearly with seismic line den-
sity when wolves followed a movement pattern resulting
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from faster movement on seismic lines and a tendency
to continue along seismic lines once on them (anisotro-
pic diffusion model). When an additional bias towards
seismic lines when wolves were near seismic lines was
included (anisotropic diffusion þ bias model), encoun-
ter rates increased linearly but not as rapidly when
compared with the model without the bias.

Given that seismic lines had the greatest effect on
encounter rates under the anisotropic diffusion move-
ment model, we examined the joint effects of seismic
and prey densities for this movement mode
(figure 3b,c). The model providing the best fit for the
effects of seismic lines on encounter rate (electronic sup-
plementary material, appendix table S2:A1) was
consistently the linear model at all prey densities, but
the slope of the relationship increased with prey density
(figure 3b) indicating an interaction between seismic
lines and prey density under this movement mode. A
power model provided the best fit for relating encounter
rate to prey density (electronic supplementary material,
appendix, table S2:B4), where the constant scaling expo-
nent (b), but variable A coefficient, also suggested a
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nonlinear interaction (electronic supplementary
material, appendix table S3). Indeed, when encounter
rate was modelled as a function of both prey and seismic
line density, the best-fit model included a significant
interaction term between seismic line and prey density
(p , 0.001, electronic supplementary material, appendix
table S3). The positive coefficient for the interaction
term showed that seismic line density enhanced the
rate at which the predators encountered prey.
3.3. The functional response

The observed increase in encounter rate due to increasing
seismic line density translates into a functional response
that increases more quickly to saturation (figure 3d,e). In
all cases, the ratio of the functional responses in land-
scapes with and without seismic lines is greater than 1,
meaning that the presence of seismic lines leads to an
increase in kill rates (figure 3f ). For handling times for
both small-bodied and large-bodied prey, the ratio is
larger at low prey densities than at higher prey densities.
This suggests that the effect of seismic lines on the
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functional response is larger when prey density is low. In
addition, across prey densities, the ratio of functional
responses in landscapes with and without seismic lines
is larger for small-bodied prey than for large-bodied
prey. Therefore, the effect of seismic lines is more
apparent when handling time is shorter.
4. DISCUSSION

All four wolves in this study, as well as wolves in the
boreal forests of Alberta [6], have demonstrated
increased movement rates when travelling on seismic
lines. Reduced debris and snow crusting on open seismic
lines in winter compared with the forest may facilitate
movement along the lines [6,29]. Three of the four
wolves studied also exhibited a higher probability of
continuing along seismic lines once on them. The pro-
pensity to remain on seismic lines is also reflected in
habitat selection studies, where wolves were found to
select seismic lines more than expected by chance [12].
The rapid movement and use of linear features have
contributed to reports that wolves use them as travel
routes [5,7,9,10,12]. The strong directional persistence
of wolves while travelling on the seismic lines that we
report may have been shaped, in part, by the straight-
ness of seismic line across the landscape relative to
other linear features like roads and trails [30]. Wolf
233 showed biased movement towards seismic lines
when near them, which is the first quantification of
such a bias, despite other reports of wolves changing
their direction in order to move directly to adjacent
compacted trails in nearby montane areas [7].

Incorporating these movement data into an advec-
tion–diffusion framework, we assessed the implications
of varied movement strategies using the first passage
time models on two movement components. We intro-
duced anisotropy in the diffusion components of first
passage models. At the same time, the possibility of
movement bias towards seismic lines led us to introduce
a bias term via advection. Both of these movement
responses to seismic lines increased encounter rates
with prey over when seismic lines were absent, consistent
with the results of previous spatially explicit, individual-
based models [31]. However, we also expected that the
bias towards the seismic line, i.e. wolves being more
likely to get on seismic lines than to leave them, would
result in the highest encounter rates. This was not the
case. In fact, although increased mobility was advan-
tageous in covering more area to find prey, a movement
bias towards seismic lines resulted in wolves finding
fewer prey that were positioned away from the seismic
lines. Unless prey are attracted to seismic lines or exist
at very high densities (figure 3c), our results indicate
that it would not be advantageous for predators to bias
their movements towards seismic lines, explaining poss-
ibly why the bias was not commonly observed among
the wolves we studied.

The purpose of fitting statistical encounter rate
models to the first passage time simulation results was
to assess how well the model parameters would reflect
the underlying movement mechanisms being modelled.
Under the anisotropic diffusion model, the statistical
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encounter rate models showed that wolf movement
did not follow either a purely directed search (model
B1) or a purely random search (model B2), even when
no effect of seismic lines was included. Instead, the
best model fit was intermediate, reflecting a mixture
of both movement modes. This model exhibited a
more than linear increase with respect to prey density,
which is consistent with type III functional response.
This is consistent with the results of McKenzie et al.
[3], who showed that the encounter rate of randomly
diffusing predators in one dimension was related to
prey density by a power law.

Encounter rates increased linearly with seismic line
density, but this increase was contingent on the distri-
bution of prey with respect to the seismic lines [32].
Simulations were based on real landscapes from the
study area. For this study area, seismic lines have
been shown to be distributed randomly across the land-
scape, unlike some other linear features such as roads
(E. H. Merrill 2005, unpublished data). Because prey
were also assumed to be randomly distributed, the
linear increase directly reflects that wolves spent more
time in directed movement in landscapes with higher
seismic line densities than when seismic lines were not
present. If prey were to avoid seismic lines, as James
& Stuart-Smith [12] have reported for caribou (Rangi-
fer tarandus), encounter rates are expected to decline.
However, as seismic line density increases, prey are
less able to avoid seismic lines [33].

Our assumption that the ungulate prey did not move
is a simplification that we needed to make to apply first
passage time analysis to a complex spatial environment.
Clearly, prey can move during the search period,
although typically at a slower rate than the wolves,
and this would have some effect on the results. However,
it is unlikely that the wolves were following the prey on
the seismic lines because their rates of movement were
substantially higher than those of ungulate prey [13].
We assumed that all prey encountered were killed and
that prey were encountered when wolves were within
100 m of the prey. While the success in killing a prey
once detected can be highly variable, we simplified the
model for the purpose of understanding the influence
movements during search on functional response.

The presence of the interaction between prey density
and seismic line density in the best-fit model indicates
that the effect of prey density on encounter rate is modi-
fied by seismic line density. Therefore, it is not the effect
of increasing seismic line density alone that leads to
increased encounter rate, but the interaction between
seismic line density and prey density. We interpret the
positive coefficient of the interaction term to mean
that increasing seismic line density will have a stronger
effect on encounter rate at high prey densities than at
low prey densities. Despite this interaction term leading
to a larger increase owing to seismic lines in the magni-
tude of the encounter rate at high prey densities, using
the Holling disc equation, we show that seismic lines
have the greatest relative influence on potential kill
rates in environments with low prey densities. This fol-
lows because predator mobility constrains searching
success more acutely at low prey densities. As prey den-
sity increases, predators shift from being search limited
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to being handling time limited, and the benefit of
increased mobility diminishes. However, even at high
prey densities increased search efficiency may still
alter predation rates when handling times are short.
Although search time theoretically may not be the lim-
iting process at high prey densities [1], wolves do not
always invest the time in consuming the full prey and,
at the extreme they have demonstrated surplus killing
[34], which is consistent with short handling time.
Additionally, in multi-prey systems, high search effi-
ciency in environments with seismic lines may increase
encounters with rare prey, that if more preferred or vul-
nerable, may result in dietary shifts [35], particularly for
a coursing predator like the wolf, whose broad scale
movements may homogenize spatial heterogeneity in
prey [36]. Altered predation pressures within a prey
community have implications of apparent competition
and prey persistence ([37–39], see also [40]).

The approximately linear relationship between
mean-squared displacement and measurement time
interval (electronic supplementary material, appendix
figure S3) indicates that a diffusion-based model may
be appropriate for modelling the movement of wolves.
However, the issue of positive correlations in the set of
movement directions retained for analysis has impli-
cations for both the bootstrapping methods, which
implicitly assume independence of data, and for the cal-
culation of the diffusion coefficient, which assumes no
persistence in movement direction. This is a difficult
issue to deal with in a satisfactory manner. One
approach for reducing correlations in move directions
is to subsample data by taking it over less frequent
time intervals [17]. However, we chose not to use this
subsampling approach because it would have removed
the important detailed information required to see
how wolves move in relation to roads over short spatial
scales. A second approach is to rescale the estimate of
the diffusion coefficient based on the simulations of
wolf movement on- and off-lines. This would have left
the off-line diffusion coefficient the same but would
have increased the on-line diffusion coefficient by
approximately 50 per cent. An alternative method for
correcting the diffusion coefficient, which leads to simi-
lar results, is based on the work of Patlak (see
appendix C of Moorcroft & Lewis [17]). This attempts
to approximately correct for persistence in move-
ment direction by rescaling the diffusion coefficient by
1/(1 2 c), where c is the mean cosine of the turning
angle, and the turning angle is the difference in consecu-
tive movement directions. We measured that the
quantity c averaged 0.18 off seismic lines and 0.43 on
seismic lines, suggesting that correlations could make
the diffusion coefficient 22 per cent higher off seismic
lines and 75 per cent higher on seismic lines. While
Patlak’s approach can deal with spatial heterogeneity,
it has not yet been extended to the case of anisotropy,
which is a central element in our model. Regardless,
we also chose not use either of these methods to rescale
the diffusion coefficient, noting that the variation calcu-
lated between the different wolves is larger than
correction term that such rescaling would entail. How-
ever, had we made such a rescaling, the overall first
passage times would be somewhat reduced, and the
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effect of seismic lines on first passage times would be
enhanced. A third mathematically interesting approach
to deal with correlations is to use a non-diffusive model,
based a velocity jump process where there is persistence
in movement direction. This non-diffusive transport
equation framework has only just recently been extended
to deal with anisotropic movement patterns [41] and the
connection with first passage time analysis has not yet
been developed. Finally, a full analysis of correlations
must also include autocorrelations over periods longer
than a single time step, which have the potential to
further increase the mean-squared displacement per unit
time (electronic supplementary material, appendix
figure S3), as well as interactions from measured cor-
relations with GPS errors. We suggest that these are
important avenues for future research.

Our understanding of the influence of predator
response to spatial heterogeneity on search behaviours
and its implications for predator–prey interactions is
now emerging [3,42–45]. Because details on animal move-
ments are now readily available with GPS technology [46],
it may be possible to quantify distinct modes of movement
[47–50] even if an understanding of motivation for the
movement behaviours is less clear [51]. In this paper, we
have shown that a new alternative model structure for
the encounter rate component of the functional response
is appropriate when predators alter their movement in
response to landscape heterogeneity. We illustrate the
point for wolves in real landscapes where seismic line den-
sities alter the directional component of search. In terms
of conservation, our results indicate that increasing seis-
mic line density or other linear features associated with
land development that affects wolf movement will have
a relatively large impact on single prey systems when
the prey is at risk (i.e. low density) and small (i.e. small
handling times) or on multi-prey systems where there is
preference for the rare species.
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